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Abstract
The diffusion and Schrödinger propagators have been known to coexist on a
lattice when a particle undergoing random walk is endowed with two states of
spin in addition to the two states of direction in a 1+1 spacetime dimension.
In this paper we derive explicit expressions for the various transitional
probabilities by employing generating functions and transform methods. The
transitional probabilities are all expressed in terms of a one-dimensional integral
involving trigonometric functions and/or Chebyshev polynomials of the first
and second kind from which the spacetime continuum limits of the diffusion
equation and Schrödinger equation follow directly.

PACS numbers: 03.65.−w, 05.40.Fb

1. Introduction

There has been a lot of interest in the recent past to understand quantum mechanics in the
context of classical statistical mechanics. On the one hand, Brownian motion provides a
microscopic model of diffusion and provides an unambiguous interpretation of the diffusion
equation. On the other hand, a similar physical interpretation is lacking for the Schrödinger
equation, whose wave solution is a complex quantity without a physical reality. Because
classical diffusion cannot account for the self-interference pattern that is so intrinsic to quantum
behavior, several theories have been put forward recently to understand the microphysics of
quantum behavior. Nelson [1] derived the Schrödinger equation starting from Newtonian
mechanics and by assuming that a particle is subject to an underlying Brownian motion
described by a combined forward-in-time and a backward-in-time Wiener processes. A
detailed account of Nelson’s original idea of stochastic mechanics and its subsequent
refinement is given in [2–5]. Nottale [6] and Ord [7] advanced the idea that spacetime is
not differentiable but is of a fractal nature, suggesting that an infinity of geodesics lie between
any two points and, thereby, providing a fundamental and universal origin for the double
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Wiener process of Nelson. These ideas are elaborated in the monograph [8]. El Naschie [9]
too considered a fractal spacetime with a Cantorial structure and argued that quantum behavior
could be mimicked by combining this fractal spacetime with a diffusion process. A totally
different paradigm was recently introduced by Ord [10], who by considering a symmetric
random walk on a lattice, showed that both the diffusion equation and the Schrödinger equation
occur as approximate descriptions of different aspects of the same classical probabilistic
system. By considering a 4-state random walk (4RW) on a discrete lattice, wherein a particle
is endowed with two states of direction and two states of spin, Ord [10–12] has shown that
both diffusion and Schrödinger propagators coexist on a lattice and that either can be obtained
from a distinct projection of the same random walk. It is too early to speculate as to which of
Nelson’s or Ord’s model will duplicate the true quantum behavior under a variety of situations.
This can only be ascertained through additional work on both models. It may be mentioned
that the combination of displacement and spin have also been used previously in [13, 14]
to study dynamics of a quantum particle in spacetime. However, the important distinction
between the Ord model and the one considered in [13, 14] is that the states describing the
direction of motion are independent of those describing the spin states in the former model.
There is also an intrinsic notion of memory embedded in the Ord’s model.

The Schrödinger type of equation is encountered under the guise of parabolic wave
equation, or simply parabolic equation in the solution of boundary-value problems in several
branches of applied physics such as acoustics [15], optics and classical electromagnetic wave
propagation [16]. In such boundary-value problems, inhomogeneities of the propagating
medium caused by the varying index of refraction of the intervening material take the place
of the potential field experienced by a quantum particle. The standard parabolic equation
is resulted when one extracts paraxial propagation along a preferred direction from the full
Helmholtz equation. In addition to providing a microscopic model for the Schrödinger
equation, the 4RW model considered by Ord is also attractive in the solution of stochastic
differential equations associated with these parabolic type of equations, carried out by
employing only real random processes. Because walks modeling the Schrödinger equation
in the 4RW model traverse only real space, no analytical continuation of boundary data into
complex space is required that would otherwise be demanded [17, 18] when solving these
boundary-value problems.

Ord does not provide explicit expressions for the various transitional probabilities, but,
instead, discusses the continuum limits directly from the governing difference equations. For
a variety of reasons, it is desirable to obtain closed-form expressions (or those involving
integrals) for these transitional probabilities. In this paper, we provide analytical expressions
for the transitional probabilities associated with the 4-state random walk in 1+1 dimension
in spacetime by using a transform approach. Our work here is partly motivated by the
desire to have expressions for the transitional probabilities while solving the aforementioned
boundary-value problems using the parabolic equation in a homogeneous medium. Using
these expressions, it is further shown that in the continuum limits as the mesh size shrinks to
zero in both space and time, one directly recovers the diffusion equation and the Schrödinger
equation. Thus, the main contributions of the paper are to (i) elucidate methodology for
obtaining the closed-form expressions for the various transitional probabilities of the 4RW,
and (ii) establish the continuum limits of the diffusion and Schrödinger equations describing
the dynamics of particles obeying the 4RW. The methodology presented in this paper is
most suitable for describing quantum dynamics of a free-particle, although the 4RW model
itself has been extended in the presence of a potential field [19]. The paper is organized
as follows: section 2 gives a brief introduction of the random walks considered in [10, 12].
Section 3 introduces the generating functions and the 2D transforms considered in this paper.
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Table 1. Various states in random walk.

State Direction Spin

1 Right +1
2 Left +1
3 Right −1
4 Left −1

Section 4 provides expressions for the various transitional probabilities as well as discusses
the derivation of the diffusion equation and the Schrödinger equation as continuum limits of
these probabilities.

2. Multistate random walks

Consider the 4RW model proposed by Ord and Deakin [12], where a particle undergoes random
motion in discrete spacetime (x = m�, t = sε), with x denoting space and t denoting time,
and � and ε denoting the spatial and temporal steps, respectively. At every point the particle
is endowed with two independent binary properties, its direction of motion (right or left) and
its spin or parity (±1). The particle is assumed to change its direction with every collision,
but change its spin only every other collision. The four states of the particle corresponding
to the four combinations of direction and spin are indicated in table 1. Note that the particle
can execute any direction of motion irrespective of the spin, in contrast to the model used in
[13, 14]. However, there is an intrinsic assumption of memory in Ord’s model that arises from
keeping track of the parity of collisions. If pµ(m�, sε)�,µ = 1, . . . , 4, is the probability
that a particle is in state µ at the spacetime point (m�, sε),m = 0,±1,±2, . . . , s = 0, 1, . . . ,

then the transitional relations considered in [12] were of the form

p1[m�, (s + 1)ε)] = αp1[(m − 1)�, sε] + βp4[(m + 1)�, sε]

p2[m�, (s + 1)ε)] = αp2[(m + 1)�, sε] + βp1[(m − 1)�, sε]

p3[m�, (s + 1)ε)] = αp3[(m − 1)�, sε] + βp2[(m + 1)�, sε]

p4[m�, (s + 1)ε)] = αp4[(m + 1)�, sε] + βp3[(m − 1)�, sε],

(1)

where α + β = 1. Here, α is the probability that a particle maintains its direction at the next
time step, whereas β is the probability that it will change its direction at the next time step.
The Markov-chain character of the transitional probabilities is evident from definitions in (1).
From the total probability theorem, the probability that a particle is somewhere on the lattice
at a given time is equal to 1 and is represented mathematically by

4∑
µ=1

∞∑
m=−∞

pµ(m�, sε)� = 1. (2)

Ord [10] has shown that the diffusion and Schrödinger propagators coexist on the lattice
and that both behaviors are embedded in equations (1). To affect a separation of the
diffusive behavior from the wave-like behavior, the following linear transformation is
used: q1(m�, sε) = 2s/2[p1(m�, sε) − p3(m�, sε)], q2(m�, sε) = 2s/2[p2(m�, sε) −
p4(m�, sε)], w1(m�, sε) = [p1(m�, sε) + p2(m�, sε) + p3(m�, sε) + p4(m�, sε)], and
w2(m�, sε) = [p1(m�, sε) + p3(m�, sε)] − [p2(m�, sε) + p4(m�, sε)]. The quantity
q1� (without the weight factor 2s/2) indicates the expected difference in the number of
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particles of opposite spin arriving at (m�, sε) while moving to the right. Similarly, q2�

refers to the expected number of particles arriving at (m�, sε) while moving to the left.
Also, w1(m�, sε)� is the probability that a particle leaves (m�, sε) in either direction
and in any spin state, and w2(m�, sε)� is the difference in the probabilities that a particle
leaves (m�, sε) to the right and the left. Introducing the shift operator E±1

x pµ(m�, sε) =
pµ[(m ± 1)�, sε], a time-advancing operator Etpµ(m�, sε) = pµ[m�, (s + 1)ε], and the
vector p = [p1, p2, p3, p4]T , where the superscript T denotes transpose, the transitional
relations in (1), which are of the form Etp = Sxp, get transformed into

Et

(
w1

w2

)
= 1

2

( (
Ex + E−1

x

) −(
Ex − E−1

x

)
(α − β)

(
Ex − E−1

x

)
(α − β)

(
Ex + E−1

x

)
)(

w1

w2

)
, (3)

Et

(
q1

q2

)
= 1√

2

(
2αE−1

x −2βEx

2βE−1
x 2αEx

) (
q1

q2

)
. (4)

Thus the variables (w1, w2) get decoupled from (q1, q2). Essentially, this decoupling results
from block-diagonalizing the matrix Sx and describing the system in terms of its eigenstates.
The physical significance of this transformation is touched upon in [11, 12]. Note that
wj and qj need not strictly be probabilistic quantities (meaning �0), but we will continue to
describe them as ‘transitional probabilities’ with the understanding that the actual probabilistic
quantities, namely, pµ, can be easily recovered from these using the inverse relations.

3. Generating functions and transforms

We are interested in the solutions of (3) and (4) for the special case of a symmetric random
walk with α = β = 0.5. In this case we have a set of linear difference equations and
the solution can be obtained conveniently using transform methods [20, 21] and appropriate
generating functions. The key step here is to pick a suitable transform consistent with the
nature and domain of definition of the problem. We denote the 2D transform L, consisting
of a Fourier transform in space (owing to the unbounded nature of the spatial coordinate) and
the z-transform [22] in time (the z-transform can be arrived from the discretized version of a
Laplace transform and is suitable for discrete functions defined on a half-line), of a discrete
function v(m�, sε) as V (kx, z) and define

V (kx, z) = �

∞∑
m=−∞

∞∑
s=0

v(m�, sε)zs e−imkx� ≡ Lv(m�, sε). (5)

The inverse relation can then be obtained as

v(m�, sε) = 1

4π2i

∫ π/�

kx=−π/�

∮
Cz

V (kx, z)

zs+1
eimkx� dkx dz ≡ L−1V (kx, z), (6)

where the identities∫ π

kx�=−π

ei(n−m)kx� dkx� = 2πδn
m (7)

∮
Cz

zr−s−1 dz = 2π iδr
s (8)

are used to derive (6). Here δn
m is the Kronecker’s delta and Cz is a closed contour around the

origin in the complex z-plane that encloses only the singularities at the origin. The present
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analysis, consisting of the z-transform along the time axis and Fourier transform along the
spatial axis, is most suitable for studying linear difference equations with constant coefficients
such as encountered in the study of free-Schrödinger equation by the 4RW model. Other
suitable methods must be devised for studying particle motion in the presence of a potential
field. Note that V (kx, z) is periodic in kx with a period 2π/�. Using the definition in (5), it
can also be shown that

Lv[m�, (s + 1)ε] = z−1 [V (kx, z) − V0(kx)] (9)

Lv[(m ± 1)�, sε] = e±ikx�V (kx, z), (10)

where V0(kx) is the Fourier transform of the initial distribution v(m�, 0):

V0(kx) = �

∞∑
m=−∞

v(m�, 0) e−imkx�. (11)

Note that the periodicity property of V0(kx) implies that V0(π/�) = V0(−π/�).

4. Transitional probabilities

Having defined the required transforms, we will now derive expressions for the transitional
probabilities w1, w2, q1 and q2. Because of the decoupling afforded in (3) and (4), it is
sufficient to consider the diffusive and wave-like behaviors separately.

4.1. Diffusive behaviour

The diffusive part of the particle motion is governed by the discrete functions w1 and w2 as
will be evident shortly. Let W1(kx, z) and W2(kx, z) be the 2D transforms of w1(m�, sε) and
w2(m�, sε) and ϒ1(kx) and ϒ2(kx) be the transforms of the initial distributions w1(m�, 0)

and w2(m�, 0), respectively. From the definition of w1 in terms of pµ,µ = 1, . . . , 4, and
relation (2), it is seen that ϒ1(0) = 1. On applying the transform L to the set (3) and making
use of the properties (9) and (10), it is easy to see that W2(kx, z) = ϒ2(kx) and

W1(kx, z) = ϒ1(kx) − iz sin(kx�)ϒ2(kx)

1 − z cos(kx�)
(12)

=
∞∑

n=0

zn cosn(kx�) [ϒ1(kx) − iz sin(kx�)ϒ2(kx)] (13)

where (13) has been obtained by using the series expansion of [1 − z cos(kx�)]−1. Such a
series converges uniformly provided that |z cos(kx�)| < 1 and this can always be insured by
choosing an appropriate Cz in (6). In other words, the contour Cz is chosen such that the
zeroes of the function 1 − z cos(kx�) lie outside it. Substituting this into (6) and making use
of (8), we finally arrive at

w1(m�, sε) = 1

2π

∫ π/�

−π/�

coss(kx�)[ϒ1(kx) − i�(s − 1) tan(kx�)ϒ2(kx)] eimkx� dkx, (14)

where �(·) is the Heaviside step function. For a given ϒ1(kx) and ϒ2(kx), integral (14) may be
computed efficiently by the application of the inverse fast Fourier transform (iFFT) algorithm
[22]. However, for special values of ϒ1(kx) and ϒ2(kx), the integral may be evaluated in

5



J. Phys. A: Math. Theor. 41 (2008) 155306 R Janaswamy

m

w
1(

m
∆,

sε
)

∆

-20 -15 -10 -5 0 5 10 15 20
0

0.04

0.08

0.12

0.16

0.2

s = 20
s = 30
s = 40

Figure 1. Calculated values of w1(m�, sε) for ϒ1(kx) = 1, ϒ2(kx) = 0.

a closed form. For example, with w1(m�, 0) = 1
�

δ0
m,w2(m�, 0) = 0(�⇒ ϒ1(kx) =

1, ϒ2(kx) = 0) and m and s even, (14) reduces to ([23], 3.631–17)

w1(m�, sε)� = 1

2s

(
s

(s − m)/2

)
, m � s. (15)

The right-hand side of (15) gives the probability of finding a particle at m in s steps, given that
it started at the origin at s = 0, in a symmetric, discrete-time, 1D random walk. The result can
be obtained directly from combinatorial analysis and is available in standard texts ([24], p 75),
([25], p 16). Figure 1 shows a plot of w1(m�, sε)� for s = 20, 30 and 40, where the data at
discrete m has been connected by smooth lines for the sake of visual clarity. The plots clearly
exhibit the diffusive behavior of w1, wherein w1 spreads out in space with a diminishing peak
value as s increases. Using the identity

∑∞
m=−∞ exp(±imx) = 2πδ(x),−π � x � π , where

δ(·) is the delta function, it may be easily verified from (14) that
∑∞

m=−∞ w1(m�, sε)� = 1.
Also note that w1 > 0. Hence w1� behaves like a true probability mass function.

We are also interested in the continuum limits � → 0, ε → 0,m → ∞, and s → ∞
such that �2/2ε = D > 0,m� → x, sε → t . Using the results lim �→0

s→∞
[coss(kx�)] =

exp
(−k2

xDt
)
, lim �→0

s→∞
[coss(kx�) tan(kx�)] = 0 in (14), we arrive at

w1(x, t) = 1

2π

∫ ∞

−∞
ϒ1(kx) e−k2

xDt eikxx dkx. (16)

This is the well-known solution of the diffusion equation ∂w1/∂t = D∂2w1/∂x2 in an
unbounded medium with an initial spectral content ϒ1(kx) (see, for example, [26]). For an
impulsive initial condition, ϒ1(kx) = 1, and one recovers the Green’s function w1(x, t) =
exp(−x2/4Dt)/

√
4πDt . The function w1(m�, sε) given in equation (14) is the discrete

version of w1(x, t) and is seen to depend not only on ϒ1(kx), but also on ϒ2(kx). The latter
contribution arises entirely from the discrete nature of space and vanishes in the continuum
limit. To summarize, the quantity w1(m�, sε)� that describes the probability that a particle
leaves (m�, sε) in either direction and in any spin state describes the diffusion process for a
symmetric 4RW.
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4.2. Wave-like behaviour

The wave-like behavior of the particle motion is governed by the discrete functions q1 and q2.
The governing equations in this case are repeated below from (4):

Et

(
q1

q2

)
= 1√

2

(
E−1

x −Ex

E−1
x Ex

)(
q1

q2

)
. (17)

Our objective here is to derive closed-form expressions for the transitional probabilities q1

and q2. Let Qj(kx, z) be the L transforms of qj (m�, sε), and let 
j(kx) be the Fourier
transforms of the initial distribution qj (m�, 0), j = 1, 2. On applying the L transform to
(17) and making use of properties (9) and (10) and carrying out some algebraic manipulations,
we get[

Q1(kx, z)

Q2(kx, z)

]
= 1

(1 − √
2z cos(kx�) + z2)

[
1 − z√

2
eikx� − z√

2
eikx�

z√
2

e−ikx� 1 − z√
2

e−ikx�

][

1(kx)


2(kx)

]
. (18)

To permit evaluation of the integral with respect to z in the inverse transform, we need to
express Q1 and Q2 in a separable form with respect to kx and z. To this end, we make use of
the identity ([23], 8.945.2)

1

1 − 2tx + t2
=

∞∑
0

Un(x)tn, (19)

where Un(·) is the Chebyshev polynomial of the second kind of order n, in (18) to arrive at

Q1(kx, z) =
∞∑

n=0

Un

(
cos kx�√

2

)
zn

[(
1 − z√

2
eikx�

)

1(kx) − z√

2
eikx�
2(kx)

]
(20)

Q2(kx, z) =
∞∑

n=0

Un

(
cos kx�√

2

)
zn

[
z√
2

e−ikx�
1(kx) +

(
1 − z√

2
e−ikx�

)

2(kx)

]
. (21)

As with the diffusive case, the contour Cz in the inverse transform is chosen such that the
zeroes of the denominator function (1 −√

2z cos(kx�) + z2) lie outside it. Equations (20) and
(21) may be substituted into the definition of the inverse transform (6) and the integral with
respect to z evaluated by making use of (8). For reasons that will become clear shortly, we
are interested in the composite discrete function ψd(m�, sε) = q2(m�, sε) + iq1(m�, sε),
which will be compared directly with the solution of the Schrödinger equation. The expression
for ψd is

ψd(m�, sε) = 1

2π

∫ π/�

−π/�

{
Us

(
cos kx�√

2

)
[
2 + i
1(kx)]

+ Us−1

(
cos kx�√

2

)
[(e−iπ/4
1(kx) − eiπ/4
2(kx)) cos(kx�)

+ (e−iπ/4
1(kx) + eiπ/4
2(kx)) sin(kx�)]

}
eimkx� dkx. (22)

As in section 4.1, the integral in (22) may be evaluated efficiently by employing the iFFT
algorithm. In the special case of 
1(kx) = 0, 
2(kx) = K2, a constant, the expression
provided in (22) can be further simplified. Making a change of variable y = cos(kx�)

7



J. Phys. A: Math. Theor. 41 (2008) 155306 R Janaswamy

and using dy/
√

1 − y2 = −dkx�, cos(m cos−1 y) = Tm(y), where Tm(·) is the Chebyshev
polynomial of the first kind of order m, we can show that

ψd(m�, sε)� = K2

π

∫ 1

−1

1√
1 − y2

{
Us

(
y√
2

)
Tm(y) − 1√

2
Us−1

(
y√
2

)

× [Tm−1(y) + iTm+1(y)]

}
dy. (23)

From the even and odd properties of Chebyshev polynomials, it can be deduced that for
s = 2r and m = 2n − 1 (or vice versa), the integral in (23) vanishes implying that
ψd [(2n − 1)�, 2rε] = 0 in this special case.

Other interesting identities can be derived starting from (22). Using the relation
Us(1/

√
2) = Us[cos(π/4)] = sin(sπ/4) + cos(sπ/4), one can readily see that

∞∑
m=−∞

ψd(m�, sε)� = e−iπs/4 [
2(0) + i
1(0)] . (24)

Hence, unlike w1�, the quantities q1� and q2� can be of alternating signs and do not represent
true probability mass functions.

Ord [11] has shown that eight different continuous functions are embedded into the
discrete functions q1 and q2. We will focus on the continuous function that would result
from choosing x = 2n�, n = 0,±1,±2, . . . , and t = 8rε, r = 0, 1, 2, . . . , in the discrete
functions q1 and q2. We show that ψd satisfies the Schrödinger equation for m = 2n, s = 8r in
the limit as � → 0, ε → 0, n → ∞, r → ∞ such that �2/2ε = D. The following identities
[23, 27] involving Chebyshev polynomials will be utilized in subsequent development:

zUs−1(z) = Us(z) − Ts(z) (25)

d

dz
Ts(z) = sUs−1(z) (26)

Ts

(
1√
2

)
= cos

(
πs

4

)
, (1 − z2)T ′′

s (z) − zT ′
s (z) + s2Ts(z) = 0 (27)

Us−1

(
1√
2

)
=

√
2 sin

(
πs

4

)
, (1 − z2)U ′′

s (z) − 3zU ′
s(z) + s(s + 2)Us(z) = 0, (28)

where a prime denotes differentiation with respect to the argument. For the purpose of
investigating the continuum limits, we would like to cast (22) in a form more suitable for
asymptotic analysis. The last term in (22) involving Us−1(·) can be replaced with dTs(·)/dkx

on using the second relation (26) to yield
sin kx�√

2
Us−1

(
cos kx�√

2

)
= −1

s�

d

dkx

Ts

(
cos kx�√

2

)
. (29)

This term is then integrated by parts and simplified using the periodicity condition 
j (π/�) =

j (−π/�), j = 1, 2. A convenient expression for the evaluation of ψd(m�, sε) is then
obtained as

ψd(m�, sε) = 1

2π

∫ π/�

−π/�

eimkx�

{
[
1(kx) − i
2(kx)]Us

(
cos kx�√

2

)

+ (1 + i)

([
1 + i

m

s

]

2(kx) +

[
i +

m

s

]

1(kx)

)
Ts

(
cos kx�√

2

)

+
1 + i

s�
[
′

2(kx) − i
′
1(kx)]Ts

(
cos kx�√

2

)}
dkx, (30)
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which is also more amenable to asymptotic analysis than (22). In the special case of

1(kx) = 0, 
2(kx) = K2 and for m/s → 0 (small spatial locations and large times) we
move on using (25) that

ψd(m�, sε) = K2

2π

∫ π/�

−π/�

eimkx�

[
Ts

(
cos kx�√

2

)
− i

cos kx�√
2

Us−1

(
cos kx�√

2

)]
dkx. (31)

We now perform an asymptotic analysis for small kx� in (31) and show that ψd(2n�, 8rε)

satisfies the Schrödinger equation. To this end, we note the following Taylor series expansions
which are obtained by making use of (26)–(28):

cos kx� ∼ 1 − k2
x�

2

2
+

(kx�)4

4!
+ · · · (32)

Ts

(
cos kx�√

2

)
∼ cos

(
πs

4

)
− k2

x�
2s

2
sin

(
πs

4

)
− (kx�)4s2

4!

×
[

3 cos
( sπ

4

)
− 4

s
sin

( sπ

4

)]
+ · · · (33)

1√
2
Us−1

(
cos kx�√

2

)
∼ sin

(
πs

4

)
+

k2
x�

2s

2

[
cos

(
πs

4

)
− 1

s
sin

(
πs

4

)]

+
(kx�)4

4!

[
(10 − 3(s2 − 1)) sin

(
πs

4

)
− 10s cos

(
πs

4

)]
+ · · · (34)

Inserting (32)–(34) into (31) and choosing s = 8r,�2 = 2Dε, sε = t, m� = x, s → ∞,

m → ∞,� → 0, ε → 0, we arrive at the desired result:

ψd(x, t) = q2(x, t) + iq1(x, t) ∼ K2

2π

∫ ∞

−∞

(
1 − iDk2

xt − k4
xD

2t2

2!
+ · · ·

)
eikxx dkx

= K2

2π

∫ ∞

−∞
e−iDk2

x teikxx dkx. (35)

Equation (35) is the spectral representation of the Green’s function corresponding to the
Schrödinger equation ∂ψ/∂t = iD∂2ψ/∂x2 with the impulsive initial condition ψ(x, t =
0+) = K2δ(x). It has the exact solution

ψ(x, t) = K2√
4π iDt

eix2/4Dt . (36)

To reinforce to the reader that the plots of the transitional probabilities (q1, q2) do resemble
the solutions of the free Schrödinger equation, we show in figure 2a comparison of the real,
	, and imaginary, 
, parts of the exact solution (36) of the Schrödinger equation with the
partial solution (q1, q2) of the 4RW. The numerical solutions shown in the figure for ψd are
on a discrete spacetime (x = m�, t = sε) and have been computed using (31) with the
iFFT algorithm [22] with size s = 213 = 8192. It is seen that the 4RW produces solutions
of oscillatory type with both positive and negative excursions for the expectations q1 and q2,
which are in excellent agreement with the analytical results for small m

s
. This is in contrast to

the quantity w1 shown in figure 1, which, behaving like the solution of the diffusion equation,
decays exponentially in space and always remains positive.

9
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m

q 2,
R

e(
ψ

)

-750 -500 -250 0 250 500 750
-0.0075

-0.005

-0.0025

0

0.0025

0.005

0.0075

real [ψ(m∆, sε)]
q2(m∆, sε)

s = 8,192, Nfft = 8,192
Γ1(kxl) = 0, Γ2(kx) = 0.5
m even

m

q 1,
Im

(ψ
)

-750 -500 -250 0 250 500 750
-0.0075

-0.005

-0.0025

0

0.0025

0.005

0.0075

imag [ψ(m∆, sε) ]
q1(m∆, sε)

s = 8,192, Nfft = 8,192
Γ1 (kx) = 0, Γ2 (kx) = 0.5
m even

(a) (b)

Figure 2. Comparison of the exact solution of Schrödinger equation with the discrete
solution of a 4RW for an impulsive initial condition. (a) q2(m�, sε), 	{ψ(m�, sε)} and (b)
q1(m�, sε), 
{ψ(m�, sε)}.

5. Summary

By considering a multistate random walk on a discrete lattice, expressions have been derived
for the various transitional probabilities using the concept of generating functions. A 2D
transform involving Fourier transformation in space and the z-transformation in time is
employed to accomplish this. The transitional probabilities governing particle motion are
expressed in terms of integrals involving trigonometric functions in the case of the diffusion
equation, and involving Chebyshev polynomials of the first and second kinds in the case
of the Schrödinger equation. Closed-form expressions have been given for particular cases
of the initial conditions. The continuum limits of the diffusion equation and Schrödinger
equation have been shown to follow directly from these transitional probabilities through
the performance of appropriate asymptotic analysis. The present analysis consisting of the
z-transform along the time axis and Fourier transform along the spatial axis is most suitable
for studying linear difference equations with constant coefficients. In the 4RW model, this
would correspond to the free Schrödinger equation. The important extension of this analysis to
higher dimensions is worth exploring and would be taken up in the future. The incorporation
of a smooth potential field in the Schrödinger equation into the 4RW model has already been
addressed by Ord in [19] and the study of its transitional probabilities will be taken up in a
separate paper using a different approach.
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